280 research outputs found

    Stability analysis of mixtures of mutagenetic trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mixture models of mutagenetic trees are evolutionary models that capture several pathways of ordered accumulation of genetic events observed in different subsets of patients. They were used to model HIV progression by accumulation of resistance mutations in the viral genome under drug pressure and cancer progression by accumulation of chromosomal aberrations in tumor cells. From the mixture models a genetic progression score (GPS) can be derived that estimates the genetic status of single patients according to the corresponding progression along the tree models. GPS values were shown to have predictive power for estimating drug resistance in HIV or the survival time in cancer. Still, the reliability of the exact values of such complex markers derived from graphical models can be questioned.</p> <p>Results</p> <p>In a simulation study, we analyzed various aspects of the stability of estimated mutagenetic trees mixture models. It turned out that the induced probabilistic distributions and the tree topologies are recovered with high precision by an EM-like learning algorithm. However, only for models with just one major model component, also GPS values of single patients can be reliably estimated.</p> <p>Conclusion</p> <p>It is encouraging that the estimation process of mutagenetic trees mixture models can be performed with high confidence regarding induced probability distributions and the general shape of the tree topologies. For a model with only one major disease progression process, even genetic progression scores for single patients can be reliably estimated. However, for models with more than one relevant component, alternative measures should be introduced for estimating the stage of disease progression.</p

    A new computational method to split large biochemical networks into coherent subnets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compared to more general networks, biochemical networks have some special features: while generally sparse, there are a small number of highly connected metabolite nodes; and metabolite nodes can also be divided into two classes: internal nodes with associated mass balance constraints and external ones without. Based on these features, reclassifying selected internal nodes (separators) to external ones can be used to divide a large complex metabolic network into simpler subnetworks. Selection of separators based on node connectivity is commonly used but affords little detailed control and tends to produce excessive fragmentation.</p> <p>The method proposed here (Netsplitter) allows the user to control separator selection. It combines local connection degree partitioning with global connectivity derived from random walks on the network, to produce a more even distribution of subnetwork sizes. Partitioning is performed progressively and the interactive visual matrix presentation used allows the user considerable control over the process, while incorporating special strategies to maintain the network integrity and minimise the information loss due to partitioning.</p> <p>Results</p> <p>Partitioning of a genome scale network of 1348 metabolites and 1468 reactions for <it>Arabidopsis thaliana </it>encapsulates 66% of the network into 10 medium sized subnets. Applied to the flavonoid subnetwork extracted in this way, it is shown that Netsplitter separates this naturally into four subnets with recognisable functionality, namely synthesis of lignin precursors, flavonoids, coumarin and benzenoids. A quantitative quality measure called <it>efficacy </it>is constructed and shows that the new method gives improved partitioning for several metabolic networks, including bacterial, plant and mammal species.</p> <p>Conclusions</p> <p>For the examples studied the Netsplitter method is a considerable improvement on the performance of connection degree partitioning, giving a better balance of subnet sizes with the removal of fewer mass balance constraints. In addition, the user can interactively control which metabolite nodes are selected for cutting and when to stop further partitioning as the desired granularity has been reached. Finally, the blocking transformation at the heart of the procedure provides a powerful visual display of network structure that may be useful for its exploration independent of whether partitioning is required.</p

    An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations

    Get PDF
    Protein-protein interactions govern almost all cellular functions. These complex networks of stable and transient associations can be mapped by affinity purification mass spectrometry (AP-MS) and complementary proximity-based labeling methods such as BioID. To exploit the advantages of both strategies, we here design and optimize an integrated approach combining AP-MS and BioID in a single construct, which we term MAC-tag. We systematically apply the MAC-tag approach to 18 subcellular and 3 sub-organelle localization markers, generating a molecular context database, which can be used to define a protein's molecular location. In addition, we show that combining the AP-MS and BioID results makes it possible to obtain interaction distances within a protein complex. Taken together, our integrated strategy enables the comprehensive mapping of the physical and functional interactions of proteins, defining their molecular context and improving our understanding of the cellular interactome.Peer reviewe

    Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small and noncoding RNAs that play important roles in various biological processes. They regulate target mRNAs post-transcriptionally through complementary base pairing. Since the changes of miRNAs affect the expression of target genes, the expression levels of target genes in specific biological processes could be different from those of non-target genes. Here we demonstrate that gene expression profiles contain useful information in separating miRNA targets from non-targets.</p> <p>Results</p> <p>The gene expression profiles related to various developmental processes and stresses, as well as the sequences of miRNAs and mRNAs in <it>Arabidopsis</it>, were used to determine whether a given gene is a miRNA target. It is based on the model combining the support vector machine (SVM) classifier and the scoring method based on complementary base pairing between miRNAs and mRNAs. The proposed model yielded low false positive rate and retrieved condition-specific candidate targets through a genome-wide screening.</p> <p>Conclusion</p> <p>Our approach provides a novel framework into screening target genes by considering the gene regulation of miRNAs. It can be broadly applied to identify condition-specific targets computationally by embedding information of gene expression profiles.</p

    Matched pairs of human prostate stromal cells display differential tropic effects on LNCaP prostate cancer cells

    Get PDF
    Prostate stromal cells may play binary roles in the process of prostate cancer development. As the first to be encountered by infiltrating prostate cancer cells, prostate stromal cells form the first defense line against prostate cancer progression and metastasis. However, interaction between prostate cancer and stromal cells may facilitate the formation of a tumor microenvironment favoring cancer cell growth and survival. To establish an experimental system for studying the interaction between cancer and stromal cells, we isolated three matched pairs of normal and cancer-associated human prostate stromal clones. In this report, we describe the morphologic and behavioral characteristics of these cells and their effect on LNCaP prostate cancer cells in co-culture. Unlike LNCaP prostate cancer cells, the isolated prostate stromal clones are large fibroblast-like cells with a slow proliferation rate. Growth and survival of these clones are not affected by androgens. The stromal cells display high resistance to serum starvation, while cancer-associated stromal clones have differentiated survival ability. In co-culture experiments, the stromal cells protected some LNCaP prostate cancer cells from death by serum starvation, and cancer-associated stromal clones showed more protection. This work thus established a panel of valuable human prostate stromal cell lines, which could be used in co-culture to study the interaction between prostate cancer and prostate stromal cells

    Comparing the effects of sun exposure and vitamin D supplementation on vitamin D insufficiency, and immune and cardio-metabolic function: The Sun Exposure and Vitamin D Supplementation (SEDS) Study

    Get PDF
    Background: Adults living in the sunny Australian climate are at high risk of skin cancer, but vitamin D deficiency (defined here as a serum 25-hydroxyvitamin D (25(OH)D) concentration of less than 50 nmol/L) is also common. Vitamin D deficiency may be a risk factor for a range of diseases. However, the optimal strategies to achieve and maintain vitamin D adequacy (sun exposure, vitamin D supplementation or both), and whether sun exposure itself has benefits over and above initiating synthesis of vitamin D, remain unclear. The Sun Exposure and Vitamin D Supplementation (SEDS) Study aims to compare the effectiveness of sun exposure and vitamin D supplementation for the management of vitamin D insufficiency, and to test whether these management strategies differentially affect markers of immune and cardio-metabolic function. Methods/Design: The SEDS Study is a multi-centre, randomised controlled trial of two different daily doses of vitamin D supplementation, and placebo, in conjunction with guidance on two different patterns of sun exposure. Participants recruited from across Australia are aged 18-64 years and have a recent vitamin D test result showing a serum 25(OH)D level of 40-60 nmol/L. Discussion: This paper discusses the rationale behind the study design, and considers the challenges but necessity of data collection within a non-institutionalised adult population, in order to address the study aims. We also discuss the challenges of participant recruitment and retention, ongoing engagement of referring medical practitioners and address issues of compliance and participant retention. Trial registration: Australia New Zealand Clinical Trials Registry: ACTRN12613000290796 Registered 14 March 2013

    Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations

    Get PDF
    During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [3H]-methotrexate ([3H]-MTX) uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively) and BCRP-mediated [3H]-estrone sulfate ([3H]-E1S) uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively), whereas indole-3-acetic acid and phenylacetic acid reduce [3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC50 value: 7 mM, respectively). In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations

    Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Get PDF
    Background The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. Methodology/Principal Findings We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Conclusions/Significance Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund

    Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas

    Get PDF
    [Abstract] Genes of the Wnt and Frizzled class, expressed in HNSCC tissue and cell lines, have an established role in cell morphogenesis and differentiation, and also they have oncogenic properties. We studied Wnt and Fz genes as potential tumor-associated markers in HNSCC by qPCR. Expression levels of Wnt and Fz genes in 22 unique frozen samples from HNSCC were measured. We also assessed possible correlation between the expression levels obtained in cancer samples in relation to clinicopathologic outcome. Wnt-1 was not expressed in the majority of the HNSCC studied, whereas Wnt-5A was the most strongly expressed by the malignant tumors. Wnt-10B expression levels were related with higher grade of undifferentiation. Related to Fz genes, Fz-5 showed more expression levels in no-affectation of regional lymph nodes. Kaplan–Meier survival analyses suggest a reduced time of survival for low and high expression of Wnt-7A and Fz-5 mRNA, respectively. qPCR demonstrated that HNSCC express Wnt and Fz members, and suggested that Wnt and Fz signaling is activated in HNSCC cells
    • …
    corecore